Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.622
Filtrar
1.
Cell Commun Signal ; 22(1): 236, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650003

RESUMO

BACKGROUND: The preservation of retinal ganglion cells (RGCs) and the facilitation of axon regeneration are crucial considerations in the management of various vision-threatening disorders. Therefore, we investigate the efficacy of interleukin-4 (IL-4), a potential therapeutic agent, in promoting neuroprotection and axon regeneration of retinal ganglion cells (RGCs) as identified through whole transcriptome sequencing in an in vitro axon growth model. METHODS: A low concentration of staurosporine (STS) was employed to induce in vitro axon growth. Whole transcriptome sequencing was utilized to identify key target factors involved in the molecular mechanism underlying axon growth. The efficacy of recombinant IL-4 protein on promoting RGC axon growth was validated through in vitro experiments. The protective effect of recombinant IL-4 protein on somas of RGCs was assessed using RBPMS-specific immunofluorescent staining in mouse models with optic nerve crush (ONC) and N-methyl-D-aspartic acid (NMDA) injury. The protective effect on RGC axons was evaluated by anterograde labeling of cholera toxin subunit B (CTB), while the promotion of RGC axon regeneration was assessed through both anterograde labeling of CTB and immunofluorescent staining for growth associated protein-43 (GAP43). RESULTS: Whole-transcriptome sequencing of staurosporine-treated 661 W cells revealed a significant upregulation in intracellular IL-4 transcription levels during the process of axon regeneration. In vitro experiments demonstrated that recombinant IL-4 protein effectively stimulated axon outgrowth. Subsequent immunostaining with RBPMS revealed a significantly higher survival rate of RGCs in the rIL-4 group compared to the vehicle group in both NMDA and ONC injury models. Axonal tracing with CTB confirmed that recombinant IL-4 protein preserved long-distance projection of RGC axons, and there was a notably higher number of surviving axons in the rIL-4 group compared to the vehicle group following NMDA-induced injury. Moreover, intravitreal delivery of recombinant IL-4 protein substantially facilitated RGC axon regeneration after ONC injury. CONCLUSION: The recombinant IL-4 protein exhibits the potential to enhance the survival rate of RGCs, protect RGC axons against NMDA-induced injury, and facilitate axon regeneration following ONC. This study provides an experimental foundation for further investigation and development of therapeutic agents aimed at protecting the optic nerve and promoting axon regeneration.


Assuntos
Axônios , Interleucina-4 , Regeneração Nervosa , Células Ganglionares da Retina , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Animais , Interleucina-4/farmacologia , Axônios/efeitos dos fármacos , Axônios/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/tratamento farmacológico , N-Metilaspartato/farmacologia , Estaurosporina/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteínas Recombinantes/farmacologia
2.
Opt Lett ; 49(8): 1880-1883, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621029

RESUMO

Hyperreflective foci (HRFs) appear in optical coherence tomography (OCT) images of the retina and vitreous of patients with various ocular diseases. HRFs are hypothesized to be immune cells that appear in response to ischemia or tissue damage. To accurately identify HRFs and establish their clinical significance, it is necessary to replicate the detection of similar patterns in vivo in a small animal model. We combined visible-light OCT with temporal speckle averaging (TSA) to visualize and track vitreal HRFs (VHRFs) densities for three days after an optic nerve crush (ONC) injury. Resulting vis-OCT images revealed that VHRF density significantly increased approximately 10-fold at 12 h after ONC and returned to baseline three days after ONC. Additional immunohistochemistry results confirmed these VHRFs as inflammatory cells induced from optic nerve damage.


Assuntos
Traumatismos do Nervo Óptico , Tomografia de Coerência Óptica , Humanos , Camundongos , Animais , Tomografia de Coerência Óptica/métodos , Retina/diagnóstico por imagem , Traumatismos do Nervo Óptico/diagnóstico por imagem , Nervo Óptico/diagnóstico por imagem
3.
Sci Rep ; 14(1): 7514, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553505

RESUMO

This study aimed to assess the impact of light perception presence or absence on visual function recovery in patients with traumatic optic neuropathy (TON). A retrospective analysis was conducted on the clinical data of 206 TON patients. Based on the presence or absence of light perception after injury, patients were categorized into a light perception group and a non-light perception group. A comparison was made between the two groups regarding visual acuity recovery before and after treatment. The non-light perception group comprised 63 patients, with a treatment effectiveness rate of 39.68%. The light perception group consisted of 143 patients, with a treatment effectiveness rate of 74.83%. The difference between the two groups was statistically significant (χ2 = 23.464, P < 0.01). Subgroup analysis indicated that surgical treatment appeared to be more effective than steroid hormone therapy for patients with light perception. Conversely, for patients without light perception, there was no significant difference in the effectiveness of the two methods. The total effectiveness rate of the light perception group was significantly higher than that of the non-light perception group, suggesting that patients with light perception before treatment experience better outcomes compared to those without light perception. Treatment choices should be individualized to ensure optimal results.


Assuntos
Traumatismos do Nervo Óptico , Humanos , Traumatismos do Nervo Óptico/tratamento farmacológico , Recuperação de Função Fisiológica , Estudos Retrospectivos , Resultado do Tratamento , Acuidade Visual
4.
Cell Rep ; 43(3): 113931, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38492223

RESUMO

In adult mammals, injured retinal ganglion cells (RGCs) fail to spontaneously regrow severed axons, resulting in permanent visual deficits. Robust axon growth, however, is observed after intra-ocular injection of particulate ß-glucan isolated from yeast. Blood-borne myeloid cells rapidly respond to ß-glucan, releasing numerous pro-regenerative factors. Unfortunately, the pro-regenerative effects are undermined by retinal damage inflicted by an overactive immune system. Here, we demonstrate that protection of the inflamed vasculature promotes immune-mediated RGC regeneration. In the absence of microglia, leakiness of the blood-retina barrier increases, pro-inflammatory neutrophils are elevated, and RGC regeneration is reduced. Functional ablation of the complement receptor 3 (CD11b/integrin-αM), but not the complement components C1q-/- or C3-/-, reduces ocular inflammation, protects the blood-retina barrier, and enhances RGC regeneration. Selective targeting of neutrophils with anti-Ly6G does not increase axogenic neutrophils but protects the blood-retina barrier and enhances RGC regeneration. Together, these findings reveal that protection of the inflamed vasculature promotes neuronal regeneration.


Assuntos
Traumatismos do Nervo Óptico , beta-Glucanas , Animais , Neutrófilos , Regeneração Nervosa/fisiologia , Células Ganglionares da Retina/fisiologia , Axônios/fisiologia , Mamíferos
5.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38548335

RESUMO

Neuroprotection after injury or in neurodegenerative disease remains a major goal for basic and translational neuroscience. Retinal ganglion cells (RGCs), the projection neurons of the eye, degenerate in optic neuropathies after axon injury, and there are no clinical therapies to prevent their loss or restore their connectivity to targets in the brain. Here we demonstrate a profound neuroprotective effect of the exogenous expression of various Ca2+/calmodulin-dependent protein kinase II (CaMKII) isoforms in mice. A dramatic increase in RGC survival following the optic nerve trauma was elicited by the expression of constitutively active variants of multiple CaMKII isoforms in RGCs using adeno-associated viral (AAV) vectors across a 100-fold range of AAV dosing in vivo. Despite this neuroprotection, however, short-distance RGC axon sprouting was suppressed by CaMKII, and long-distance axon regeneration elicited by several pro-axon growth treatments was likewise inhibited even as CaMKII further enhanced RGC survival. Notably, in a dose-escalation study, AAV-expressed CaMKII was more potent for axon growth suppression than the promotion of survival. That diffuse overexpression of constitutively active CaMKII strongly promotes RGC survival after axon injury may be clinically valuable for neuroprotection per se. However, the associated strong suppression of the optic nerve axon regeneration demonstrates the need for understanding the intracellular domain- and target-specific CaMKII activities to the development of CaMKII signaling pathway-directed strategies for the treatment of optic neuropathies.


Assuntos
Doenças Neurodegenerativas , Doenças do Nervo Óptico , Traumatismos do Nervo Óptico , Camundongos , Animais , Células Ganglionares da Retina/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Axônios/metabolismo , Doenças Neurodegenerativas/metabolismo , Regeneração Nervosa/fisiologia , Doenças do Nervo Óptico/metabolismo , Isoformas de Proteínas/metabolismo , Sobrevivência Celular/fisiologia
6.
Acta Neuropathol Commun ; 12(1): 44, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504301

RESUMO

Microglia-mediated neuroinflammatory responses are recognized as a predominant factor during high intraocular pressure (IOP)-induced retinal and optic nerve injury along with potential therapeutic targets for the disease. Our previous research indicated that mesenchymal stem cell (MSC) treatment could reduce high IOP-induced neuroinflammatory responses through the TLR4 pathway in a rat model without apparent cell replacement and differentiation, suggesting that the anti-neuroinflammatory properties of MSCs are potentially mediated by paracrine signaling. This study aimed to evaluate the anti-neuroinflammatory effect of human adipose tissue-derived extracellular vesicles (ADSC-EVs) in microbead-induced ocular hypertension (OHT) animals and to explore the underlying mechanism since extracellular vesicles (EVs) are the primary transporters for cell secretory action. The anti-neuroinflammatory effect of ADSC-EVs on LPS-stimulated BV-2 cells in vitro and OHT-induced retinal and optic nerve injury in vivo was investigated. According to the in vitro research, ADSC-EV treatment reduced LPS-induced microglial activation and the TLR4/NF-κB proinflammatory cascade response axis in BV-2 cells, such as CD68, iNOS, TNF-α, IL-6, and IL-1ß, TLR4, p-38 MAPK, NF-κB. According to the in vivo data, intravitreal injection of ADSC-EVs promoted RGC survival and function, reduced microglial activation, microglial-derived neuroinflammatory responses, and TLR4/MAPK/NF-κB proinflammatory cascade response axis in the OHT mice. Our findings provide preliminary evidence for the RGC protective and microglia-associated neuroinflammatory reduction effects of ADSC-EVs by inhibiting the TLR4/MAPK/NF-κB proinflammatory cascade response in OHT mice, indicating the therapeutic potential ADSC-EVs or adjunctive therapy for glaucoma.


Assuntos
Glaucoma , Hipertensão Ocular , Traumatismos do Nervo Óptico , Humanos , Ratos , Camundongos , Animais , NF-kappa B/metabolismo , Microglia/metabolismo , Receptor 4 Toll-Like/metabolismo , Células Ganglionares da Retina/metabolismo , Lipopolissacarídeos/farmacologia , Hipertensão Ocular/metabolismo , Inflamação/metabolismo , Células-Tronco/metabolismo
7.
J Pharmacol Sci ; 154(4): 326-333, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485351

RESUMO

PURPOSE: To determine whether combination of topical ripasudil and brimonidine has more effective neuroprotection on retinal ganglion cells (RGCs) following injury to axons composing the optic nerve. METHODS: Topical ripasudil, brimonidine, or mixture of both drugs were administered to adult mice after optic nerve injury (ONI). The influence of drug conditions on RGC health were evaluated by the quantifications of surviving RGCs, phosphorylated p38 mitogen-activated protein kinase (phospho-p38), and expressions of trophic factors and proinflammatory mediators in the retina. RESULTS: Topical ripasudil and brimonidine suppressed ONI-induced RGC death respectively, and mixture of both drugs further stimulated RGC survival. Topical ripasudil and brimonidine suppressed ONI-induced phospho-p38 in the whole retina. In addition, topical ripasudil suppressed expression levels of TNFα, IL-1ß and monocyte chemotactic protein-1 (MCP-1), whereas topical brimonidine increased the expression level of basic fibroblast growth factor (bFGF). CONCLUSIONS: Combination of topical ripasudil and brimonidine may enhance RGC protection by modulating multiple signaling pathways in the retina.


Assuntos
Isoquinolinas , Traumatismos do Nervo Óptico , Sulfonamidas , Camundongos , Animais , Tartarato de Brimonidina , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/metabolismo , Neuroproteção , Combinação de Medicamentos
8.
BMC Ophthalmol ; 24(1): 132, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528463

RESUMO

BACKGROUND: To analyze the morphologic and functional change in traumatic optic neuropathy (TON) divided by the mechanism of optic nerve injury. METHODS: A retrospective analysis of 58 patients who were diagnosed as monocular TON from February 2015 to August 2021 was conducted at in CHA Bundang Medical Center in Seongnam, South Korea. The patients visited the clinic of the department of ophthalmology for more than 6 months and at least 4 times during this period. RESULTS: 44 patients were classified as blunt TON patients, and 14 patients were surgical TON patients. The visual acuity showed significant decrease in traumatic eyes at the first visit after injury compared to fellow eyes and maintained the injured status during the 1-year follow-up period in blunt TON. In surgical TON, the visual acuity slightly improved during 1 month follow-up period. RNFL thickness tended to be decreased at 1 month after first visit blunt TON patients, which was earlier than surgical TON patients. GCIPL thickness showed earlier decreased than RNFL thickness in both blunt and surgical TON patients. CONCLUSIONS: In both blunt and surgical TON eyes, there was a notable thinning in both RNFL and GCIPL, with particularly remarkable reduction in GCIPL in early phase. Therefore, analyzing each retinal layer thickness using OCT in conjunction with assessing visual function would be necessary. This combined approach is not only crucial for understanding clinical courses of each TON, but also predicting the morphological and functional deteriorations in TON.


Assuntos
Traumatismos do Nervo Óptico , Humanos , Células Ganglionares da Retina , Estudos Retrospectivos , Tomografia de Coerência Óptica , Retina
9.
Nat Commun ; 15(1): 2206, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467611

RESUMO

Previous studies of neuronal survival have primarily focused on identifying intrinsic mechanisms controlling the process. This study explored how intercellular communication contributes to retinal ganglion cell (RGC) survival following optic nerve crush based on single-cell RNA-seq analysis. We observed transcriptomic changes in retinal cells in response to the injury, with astrocytes and Müller glia having the most interactions with RGCs. By comparing RGC subclasses characterized by distinct resilience to cell death, we found that the high-survival RGCs tend to have more ligand-receptor interactions with neighboring cells. We identified 47 interactions stronger in high-survival RGCs, likely mediating neuroprotective effects. We validated one identified target, the µ-opioid receptor (Oprm1), to be neuroprotective in three retinal injury models. Although the endogenous Oprm1 is preferentially expressed in intrinsically photosensitive RGCs, its neuroprotective effect can be transferred to other subclasses by pan-RGC overexpression of Oprm1. Lastly, manipulating the Oprm1 activity improved visual functions in mice.


Assuntos
Fármacos Neuroprotetores , Traumatismos do Nervo Óptico , Animais , Camundongos , Comunicação Celular , Morte Celular , Sobrevivência Celular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/fisiologia
10.
Int Ophthalmol ; 44(1): 1, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38315313

RESUMO

PURPOSE: Idiopathic normal pressure hydrocephalus (iNPH) is associated with an increased prevalence of open-angle glaucoma, attributed to variations of the pressure gradient between intraocular and intracranial compartments at the level of the lamina cribrosa (LC). As ocular biomechanics influence the behavior of the LC, and a lower corneal hysteresis (CH) has been associated to a higher risk of glaucomatous optic nerve damage, in this study we compared ocular biomechanics of iNPH patients with healthy subjects. METHODS:  Twenty-four eyes of 24 non-shunted iNPH patients were prospectively recruited. Ocular biomechanical properties were investigated using the ocular response analyzer (Reichert Instruments) for the calculation of the CH, corneal resistance factor (CRF), Goldmann-correlated intraocular pressure (IOPg), and corneal-compensated intraocular pressure (IOPcc). Results were compared with those of 25 eyes of 25 healthy subjects. RESULTS:  In iNPH eyes, the median CH value and interquartile range (IQR) were 9.7 mmHg (7.8-10) and 10.6 mmHg (9.3-11.3) in healthy controls (p = 0.015). No significant differences were found in IOPcc [18.1 mmHg (14.72-19.92) vs. 16.4 mmHg (13.05-19.6)], IOPg [15.4 mmHg (12.82-19.7) vs. 15.3 mmHg (12.55-17.35)], and CRF [9.65 mmHg (8.07-11.65) vs. 10.3 mmHg (9.3-11.5)] between iNPH patients and controls. CONCLUSIONS:  In iNPH patients, the CH was significantly lower compared to healthy subjects. This result suggests that ocular biomechanical properties may potentially contribute to the risk of development of glaucomatous optic nerve damage in iNPH patients.


Assuntos
Glaucoma de Ângulo Aberto , Hidrocefalia de Pressão Normal , Traumatismos do Nervo Óptico , Humanos , Hidrocefalia de Pressão Normal/complicações , Pressão Intraocular , Tonometria Ocular/métodos , Córnea/fisiologia , Fenômenos Biomecânicos , Elasticidade
11.
Exp Neurol ; 375: 114741, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38395216

RESUMO

Nuclear factor erythroid 2 like (Nfe2l) gene family members 1-3 mediate cellular response to oxidative stress, including in the central nervous system (CNS). However, neuronal functions of Nfe2l3 are unknown. Here, we comparatively evaluated expression of Nfe2l1, Nfe2l2, and Nfe2l3 in singe cell RNA-seq (scRNA-seq)-profiled cortical and retinal ganglion cell (RGC) CNS projection neurons, investigated whether Nfe2l3 regulates neuroprotection and axon regeneration after CNS injury in vivo, and characterized a gene network associated with Nfe2l3 in neurons. We showed that, Nfe2l3 expression transiently peaks in developing immature cortical and RGC projection neurons, but is nearly abolished in adult neurons and is not upregulated after injury. Furthermore, within the retina, Nfe2l3 is enriched in RGCs, primarily neonatally, and not upregulated in injured RGCs, whereas Nfe2l1 and Nfe2l2 are expressed robustly in other retinal cell types as well and are upregulated in injured RGCs. We also found that, expressing Nfe2l3 in injured RGCs through localized intralocular viral vector delivery promotes neuroprotection and long-distance axon regeneration after optic nerve injury in vivo. Moreover, Nfe2l3 provided a similar extent of neuroprotection and axon regeneration as viral vector-targeting of Pten and Klf9, which are prominent regulators of neuroprotection and long-distance axon regeneration. Finally, we bioinformatically characterized a gene network associated with Nfe2l3 in neurons, which predicted the association of Nfe2l3 with established mechanisms of neuroprotection and axon regeneration. Thus, Nfe2l3 is a novel neuroprotection and axon regeneration-promoting factor with a therapeutic potential for treating CNS injury and disease.


Assuntos
Axônios , Traumatismos do Nervo Óptico , Humanos , Axônios/fisiologia , Neuroproteção , Regeneração Nervosa/fisiologia , Células Ganglionares da Retina/metabolismo , Retina/metabolismo , Traumatismos do Nervo Óptico/metabolismo
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167053, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325588

RESUMO

Melatonin is involved in exerting protective effects in aged-related and neurodegenerative diseases through a silent information regulator type 1 (SIRT1)-dependent pathway. However, little was known about the impact of melatonin on retinal ganglion cell (RGC) senescence and apoptosis following optic nerve crush (ONC). Thus, this study aimed to examine the effects of melatonin on RGC senescence and apoptosis after ONC and investigate the involvement of SIRT1 in this process. To study this, an ONC model was established. EX-527, an inhibitor of SIRT1, was injected intraperitoneally into mice. And melatonin was administrated abdominally into mice after ONC every day. Hematoxylin & eosin staining, retina flat-mounts and optical coherence tomography were used to evaluate the loss of retina cells/neurons. Pattern electroretinogram (p-ERG) was performed to evaluate the function of RGCs. Immunofluorescence and western blot were used to evaluate protein expression. SA-ß-gal staining was employed to detect senescent cells. The results demonstrated that melatonin partially rescued the expression of SIRT1 in RGC 3 days after ONC. Additionally, melatonin administration partly rescued the decreased RGC number and ganglion cell complex thickness observed 14 days after ONC. Melatonin also suppressed ONC-induced senescence and apoptosis index. Furthermore, p-ERG showed that melatonin improved the amplitude of P50, N95 and N95/P50 following ONC. Importantly, the protective effects of melatonin were reversed when EX-527 was administered. In summary, this study revealed that melatonin attenuated RGC senescence and apoptosis through a SIRT1-dependent pathway after ONC. These findings provide valuable insights for the treatment of RGC senescence and apoptosis.


Assuntos
Melatonina , Traumatismos do Nervo Óptico , Animais , Camundongos , Apoptose , Melatonina/farmacologia , Melatonina/uso terapêutico , Traumatismos do Nervo Óptico/tratamento farmacológico , Células Ganglionares da Retina/metabolismo , Sirtuína 1/metabolismo
13.
Biochem Biophys Res Commun ; 700: 149509, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38306929

RESUMO

Optic neuropathies, such as glaucoma, are due to progressive retinal ganglion cells (RGCs) degeneration, result in irreversible vision loss. The promising RGCs replacement therapy for restoring vision are impeded by insufficient RGC-like cells sources. The present work was enriched one new type RGC-like cells using two surface markers CD184 and CD171 from human induced pluripotent stem cells (hiPSCs) by FACS sorting firstly. These new kind cells have well proliferation ability and possessed passage tolerance in vitro 2D or 3D spheroids culture, which kept expressing Pax6, Brn3b and ßIII-Tubulin and so on. The transplanted CD184+CD171+ RGC-like cells could survive and integrate into the normal and optic nerve crush (ONC) mice retina, especially they were more inclined to across the optic nerve head and extend to the damaged optic nerve. These data support the feasible application for cell replacement therapy in RGC degenerative diseases, as well as help to develop new commercial cells sorting reagents and establish good manufacturing practice (GMP) grade RGC-like donor cells for further clinical application.


Assuntos
Células-Tronco Pluripotentes Induzidas , Traumatismos do Nervo Óptico , Camundongos , Animais , Humanos , Retina , Células Ganglionares da Retina , Nervo Óptico , Organoides , Modelos Animais de Doenças , Compressão Nervosa
14.
Curr Opin Pharmacol ; 74: 102428, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171063

RESUMO

The optic nerve, predominantly constituted by the axons of retinal ganglion cells (RGCs), lacks the ability to regenerate and re-establish function after injury. RGCs are crucial for visual function, and thus, RGC death contributes to the development of numerous progressive neurodegenerative optic neuropathies including glaucoma, ischemic optic neuropathy, and optic neuritis. Regenerating optic nerve axons poses numerous challenges due to factors such as the intricate and inhibitory conditions that exist within their environment, intrinsic breaks to regeneration, and the geometric tortuosity that offers physical hindrance to axon growth. However, recent research advancements offer hope for clinically meaningful regeneration for those who suffer from optic nerve damage. In this review, we highlight the current treatment approaches for optic nerve axon regeneration.


Assuntos
Axônios , Traumatismos do Nervo Óptico , Animais , Humanos , Axônios/fisiologia , Regeneração Nervosa/fisiologia , Modelos Animais de Doenças , Nervo Óptico/fisiologia
15.
Neurosci Lett ; 823: 137662, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38286398

RESUMO

Numerous micro-RNAs (miRNAs) affect neurodevelopment and neuroprotection, but potential roles of many miRNAs in regulating these processes are still unknown. Here, we used the retinal ganglion cell (RGC) central nervous system (CNS) projection neuron and optic nerve crush (ONC) injury model, to optimize a mature miRNA arm-specific quantification method for characterizing the developmental regulation of miR-1247-5p in RGCs, investigated whether injury affects its expression, and tested whether upregulating miR-1247-5p-mimic in RGCs promotes neuroprotection and axon regeneration. We found that, miR-1247-5p is developmentally-downregulated in RGCs, and is further downregulated after ONC. Importantly, RGC-specific upregulation of miR-1247-5p promoted neuroprotection and axon regeneration after injury in vivo. To gain insight into the underlying mechanisms, we analyzed by bulk-mRNA-seq embryonic and adult RGCs, along with adult RGCs transduced by miR-1247-5p-expressing viral vector, and identified developmentally-regulated cilial and mitochondrial biological processes, which were reinstated to their embryonic levels in adult RGCs by upregulation of miR-1247-5p. Since axon growth is also a developmentally-regulated process, in which mitochondrial dynamics play important roles, it is possible that miR-1247-5p promoted neuroprotection and axon regeneration through regulating mitochondrial functions.


Assuntos
MicroRNAs , Traumatismos do Nervo Óptico , Humanos , Neuroproteção/fisiologia , Axônios/metabolismo , Regulação para Cima , Regeneração Nervosa/genética , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
16.
Invest Ophthalmol Vis Sci ; 65(1): 48, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38294803

RESUMO

Purpose: Axonal optic nerve (ON) damage in glaucoma is characteristically associated with increased amounts of active transforming growth factor-beta 2 (TGF-ß2) in the ON head. Here we investigated the functional role of scleral TGF-ß signaling in glaucoma. Methods: A deficiency of Tgfbr2, which encodes for TGF-ß receptor type II (TGF-ßRII), the essential receptor for canonical TGF-ß signaling, was induced in fibroblasts (including those of the sclera) of mutant mice. To this end, 5-week-old mice were treated with tamoxifen eye drops. Experimental glaucoma was induced in 8-week-old mice using a magnetic microbead (MB) model. After 6 weeks of high intraocular pressure (IOP), the ON axons and their somata in the retina were labeled by paraphenylenediamine (PPD) and RNA-binding protein with multiple splicing (RBPMS) immunohistochemistry, respectively, and quantified. Results: Tamoxifen treatment resulted in a significant decrease of TGF-ßRII and its mRNA in the sclera. After 6 weeks of high IOP, reduced numbers of PPD-stained ON axons were seen in MB-injected eyes in comparison with not-injected contralateral eyes. Moreover, MB injection also led to a decrease of retinal ganglion cell (RGC) somata as seen in RBPMS-stained retinal wholemounts. Axon loss and RGC loss were significantly higher in mice with a fibroblast specific deficiency of TGF-ßRII in comparison with control animals. Conclusions: We conclude that the ablation of scleral TGF-ß signaling increases the susceptibility to IOP-induced ON damage. Scleral TGF-ß signaling in mutant mice appears to be beneficial for ON axon survival in experimentally induced glaucoma.


Assuntos
Glaucoma , Disco Óptico , Traumatismos do Nervo Óptico , Animais , Camundongos , Esclera , Tamoxifeno , Fator de Crescimento Transformador beta/genética
17.
Proc Natl Acad Sci U S A ; 121(6): e2305947121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289952

RESUMO

Optic neuropathies, characterized by injury of retinal ganglion cell (RGC) axons of the optic nerve, cause incurable blindness worldwide. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) represent a promising "cell-free" therapy for regenerative medicine; however, the therapeutic effect on neural restoration fluctuates, and the underlying mechanism is poorly understood. Here, we illustrated that intraocular administration of MSC-sEVs promoted both RGC survival and axon regeneration in an optic nerve crush mouse model. Mechanistically, MSC-sEVs primarily targeted retinal mural cells to release high levels of colony-stimulating factor 3 (G-CSF) that recruited a neural restorative population of Ly6Clow monocytes/monocyte-derived macrophages (Mo/MΦ). Intravitreal administration of G-CSF, a clinically proven agent for treating neutropenia, or donor Ly6Clow Mo/MΦ markedly improved neurological outcomes in vivo. Together, our data define a unique mechanism of MSC-sEV-induced G-CSF-to-Ly6Clow Mo/MΦ signaling in repairing optic nerve injury and highlight local delivery of MSC-sEVs, G-CSF, and Ly6Clow Mo/MΦ as therapeutic paradigms for the treatment of optic neuropathies.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Traumatismos do Nervo Óptico , Camundongos , Animais , Axônios/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/terapia , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/fisiologia , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo
18.
Exp Eye Res ; 239: 109784, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199261

RESUMO

Transient receptor potential vanilloid (TRPV) channels are members of the TRP channel superfamily, which are ion channels that sense mechanical and osmotic stimuli and participate in Ca2+ signalling across the cell membrane. TRPV channels play important roles in maintaining the normal functions of an organism, and defects or abnormalities in TRPV channel function cause a range of diseases, including cardiovascular, neurological and urological disorders. Glaucoma is a group of chronic progressive optic nerve diseases with pathological changes that can occur in the tissues of the anterior and posterior segments of the eye, including the ciliary body, trabecular meshwork, Schlemm's canal, and retina. TRPV channels are expressed in these tissues and play various roles in glaucoma. In this article, we review various aspects of the pathogenesis of glaucoma, the structure and function of TRPV channels, the relationship between TRPV channels and systemic diseases, and the relationship between TRPV channels and ocular diseases, especially glaucoma, and we suggest future research directions. This information will help to further our understanding of TRPV channels and provide new ideas and targets for the treatment of glaucoma and optic nerve damage.


Assuntos
Glaucoma , Traumatismos do Nervo Óptico , Humanos , Esclera/patologia , Retina/patologia , Malha Trabecular/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Nervo Óptico/patologia
19.
Exp Eye Res ; 239: 109787, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211683

RESUMO

Retinal ganglion cell (RGC) death and axonal loss cause irreversible vision loss upon optic nerve (ON) injury. We have independently demonstrated that mesenchymal stem cells (MSCs) and green tea extract (GTE) promote RGC survival and axonal regeneration in rats with ON injury. Here we aimed to evaluate the combined treatment effect of human bone marrow-derived MSCs (hBM-MSCs) and GTE on RGC survival and axonal regeneration after ON injury. Combined treatment of hBM-MSCs and GTE promoted RGC survival and neurite outgrowth/axonal regeneration in ex vivo retinal explant culture and in rats after ON injury. GTE increased Stat3 activation in the retina after combined treatment, and enhanced brain-derived neurotrophic factor secretion from hBM-MSCs. Treatment of 10 µg/mL GTE would not induce hBM-MSC apoptosis, but inhibited their proliferation, migration, and adipogenic and osteogenic differentiation in vitro with reducing matrix metalloproteinase secretions. In summary, this study revealed that GTE can enhance RGC protective effect of hBM-MSCs, suggesting that stem cell priming could be a prospective strategy enhancing the properties of stem cells for ON injury treatment.


Assuntos
Células-Tronco Mesenquimais , Traumatismos do Nervo Óptico , Ratos , Humanos , Animais , Traumatismos do Nervo Óptico/terapia , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/metabolismo , Osteogênese , Chá/metabolismo , Regeneração Nervosa/fisiologia , Sobrevivência Celular/fisiologia , Axônios/metabolismo
20.
J Neuroophthalmol ; 44(1): 22-29, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38251954

RESUMO

BACKGROUND: MRI abnormalities are common in optic neuropathies, especially on dedicated orbital imaging. In acute optic neuritis, optic nerve T2-hyperintensity associated with optic nerve contrast enhancement is the typical imaging finding. In chronic optic neuropathies, optic nerve T2-hyperintensity and atrophy are regularly seen. Isolated optic nerve T2-hyperintensity is often erroneously presumed to reflect optic neuritis, frequently prompting unnecessary investigations and neuro-ophthalmology consultations. Our goal was to determine the significance of optic nerve/chiasm T2-hyperintensity and/or atrophy on MRI. METHODS: Retrospective study of consecutive patients who underwent brain/orbital MRI with/without contrast at our institution between July 1, 2019, and June 6, 2022. Patients with optic nerve/chiasm T2-hyperintensity and/or atrophy were included. Medical records were reviewed to determine the etiology of the T2-hyperintensity and/or atrophy. RESULTS: Four hundred seventy-seven patients (698 eyes) were included [mean age 52 years (SD ±18 years); 57% women]. Of the 364 of 698 eyes with optic nerve/chiasm T2-hyperintensity without atrophy, the causes were compressive (104), inflammatory (103), multifactorial (49), glaucoma (21), normal (19), and other (68); of the 219 of 698 eyes with optic nerve/chiasm T2-hyperintensity and atrophy, the causes were compressive (57), multifactorial (40), inflammatory (38), glaucoma (33), normal (7), and other (44); of the 115 of 698 eyes with optic nerve/chiasm atrophy without T2-hyperintensity, the causes were glaucoma (34), multifactorial (21), inflammatory (13), compressive (11), normal (10), and other (26). Thirty-six eyes with optic nerve/chiasm T2-hyperintensity or atrophy did not have evidence of optic neuropathy or retinopathy on ophthalmologic examination, and 17 eyes had clinical evidence of severe retinopathy without primary optic neuropathy. CONCLUSIONS: Optic nerve T2-hyperintensity or atrophy can be found with any cause of optic neuropathy and with severe chronic retinopathy. These MRI findings should not automatically prompt optic neuritis diagnosis, workup, and treatment, and caution is advised regarding their use in the diagnostic criteria for multiple sclerosis. Cases of incidentally found MRI optic nerve T2-hyperintensity and/or atrophy without a known underlying optic neuropathy or severe retinopathy are rare. Such patients should receive an ophthalmologic examination before further investigations.


Assuntos
Glaucoma , Atrofia Óptica , Doenças do Nervo Óptico , Traumatismos do Nervo Óptico , Neurite Óptica , Doenças Retinianas , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Estudos Retrospectivos , Nervo Óptico/diagnóstico por imagem , Nervo Óptico/patologia , Doenças do Nervo Óptico/patologia , Neurite Óptica/etiologia , Imageamento por Ressonância Magnética/métodos , Atrofia Óptica/diagnóstico , Atrofia Óptica/complicações , Traumatismos do Nervo Óptico/complicações , Atrofia/complicações , Atrofia/patologia , Glaucoma/complicações , Glaucoma/patologia , Doenças Retinianas/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...